METAL SUPPLY AIR VALVE OTV

Measurement:

Model	D	d [mm]	A [mm]	Weight[g]
80	112	93	37	140
100	132	110	40	190
125	162	135	46	260
150	193	158	54	370
160	193	158	54	370
200	245	205	64	550

The air direction plate as well as the nut is mounted and can be taken off

The measurement of air flow is made by a pressure difference measurement with a separate measuring tube.

Air flow can be adjusted by changing the adjustments by rotating the disc.

Air flow I/s (m3/h) at sound level OTV (DTS)

25dB 30dB

OTV 100	With sector plarte	15	22 (79)
OTV 100	Without sector plate	19	29 (104)
OTV 125	With sector plarte	20	28 (101)
OTV 125	Without sector plate	25	42 (151)
OTV 160	With sector plarte	20	42(151)

OTV 160 Without sector plate 40 66 (238)

DTS-100 with sector plate

DTS-100 without sector plate

DTS-125 with sector plate

DTS-125 without sector plate

DTS-160 with sector plate

DTS-160 without sector plate

Acoustical data, dimensions and weight

Sound power level Lw

DTS with sector plate

								_
DTS		Correction of sound level in dB at						
		octave	bands	, middle	e frequer	nay, Hz		
	125	250	500	1000	2000	4000	8000	
100	5	2	0	-2	-4	-4	-12	
125	3	3	3	0	-8	-15	-29	
160	7	4	2	-1	-6	-17	-31	
Tol. ±	3	2	2	2	2	2	3	

DTS without sector plate

	DTS		Correction of sound level in dB at						
ı			octave	bands	, middle	e freguer	ncy, Hz		
ı		125	250	500	1000	2000	4000	8000	
	100	-5	2	1	-1	-4	-5	-11	
1	125	4	5	3	-1	-11	-17	-29	
ı	160	7	6	3	-2	-11	-19	-32	
	Tol.±	3	5	5	5	5	5	3	

Sound power levels by octave bands are obtained by adding to total sound pressure level L_{p10A} , dB(A), the corrections K_{oct} presented in the table according to the following formula:

$$L_{Woct} = L_{p10A} + K_{oct}$$

Correction \boldsymbol{K}_{oct} is average value in range of use of the unit.

Sound attenuation AL

DTS			Cor	rection	of sou	nd level	in dB at	
	63	125	250	500	1000	2000	4000	8000 Hz
100 125	55	18 16		11	9	8	7	8
160	18	14	10	9	9	7	6	6
Tol.±	6	3	2	2	2	2	2	3

The average sound attenuation ΔL from duct to room including the orifice attenuation of the connecting duct in ceiling installation, is obtained in the table above.

Diffusion pattern

 $L_{0.2[\Delta t]} = k \times L_{0.2}$

Regulation	∆t (C°)	ь	h	k
в = 4	0	1.45 x L _{0.2}	0.04x L _{0.2}	1.0
в = 4	-10	1.45 x L _{0.2(Δt)}	0.08 x L _{0.2(Δt)}	0.8
в = 15	0	1.45 x L _{0.2}	0.04 x L _{0.2}	1.0
s = 15	-10	1.45 x L _{0.2(M)}	0.1 x L _{0.2(Δt)}	0.75

Throw in free space mounting

In case of free space mounting the throw can be calculated by using the following factors: when $\Delta t = 0$ °C:

Adjustment s (mm)	factor
4	0.5
9	0.45
15	0.4

Dimensions and weight

Size	ØD	Ød	В	Weight g
100 125 160	143 173 216	67 76 80	17 18 19	270 430

Size	Ød	ØD	Weight KKT (g)	Weight KKL (g)
100	99	122	75	71
125	124	148	102	97
160	159	184	131	125

Size	ØD	Ød
100	150	100
125	180	125
160	553	160

Size	ØD
100	102
125	130
160	160