

Flow controller (PN 25) AVQ - return and flow mounting

AVQ Controller

Description

AVQ is a self-acting flow controller primarily for use in district heating systems. The controller closes when set max. flow is exceeded.

The controller has a control valve with adjustable flow restrictor and an actuator with one control diaphragm.

Main data:

- DN 15-50
- k_{vs} 1.6-25 m³/h
- Flow range 0.03-15 m³/h
- PN 25

.

•

- Flow restrictor ∆p: 0.2 bar
 - Temperature:
 - Circulation water / glycolic water up to 30%: 2 ... 150 °C
- Connections:
- Ext. thread (weld-on, thread and flange tailpieces)
- Flange

Ordering

Example:

Flow controller; DN 15; k_{vs} 1.6; PN 25; flow restrictor Δp 0.2 bar; T_{max} 150 °C; ext. thread

- 1× AVQ DN 15 controller Code No: **003H6722**

Option:

- 1× Weld-on tailpieces Code No: **003H6908**

The controller will be delivered completely assembled, inclusive impulse tube between valve and actuator.

Picture	DN (mm)	k _{vs} (m3/h)	Connection		Code No.
		1.6			003H6722
	15	2.5		G ¾ A	003H6723
		4.0			003H6724
	20	6.3	Cylindr. ext. thread	G 1 A	003H6725
	25	8.0	acc. to ISO 228/1	G 1¼ A	003H6726
	32	12.5		G 1¾ A	003H6727
	40	16		G 2 A	003H6728
	50	20		G 2½ A	003H6729
	32	12.5			003H6730
	40	20	Flanges PN 25, acc. to	EN 1092-2	003H6731
	50 25			003H6732	

AVQ (PN 25)

Ordering (continuous)

Accessories

Picture	Type designation	DN	Connection		Code No.
		15			003H6908
		20			003H6909
	Weld-on tailpieces	25			003H6910
		32	-		003H6911
		40			003H6912
		50			003H6913
		15		R 1⁄2	003H6902
	External thread tailpieces	20	Conical ext. thread acc. to EN 10226-1	R 3⁄4	003H6903
		25		R 1	003H6904
니다님이 비난 네		32		R 1¼	003H6905
		40		R 1½	065B2004
		50		R 2	065B2005
ЛП		15		003H6915	
	Flange tailpieces	20	Flanges PN 25, acc. to EN 1092-2	003H6916	
		25		003H6917	

Service kits

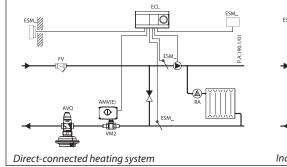
Picture	Type designation	DN	k_{vs} (m³/h)	Code No.
			1.6	003H6863
a		15	2.5	003H6864
	Makes in each		4.0	003H6865
	Valve insert	20	6.3	003H6866
		25	8.0	003H6867
		32 / 40 / 50	12.5 / 16 / 20 / 25	003H6868
		Fixed	setting (bar)	Code No.
	Actuator	0.2		

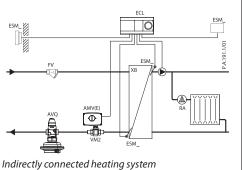
Technical data

Nominal diameter			DN	15			20	25	32	40	50
k _{vs} value				1.6	2.5	4.0	6.3	8.0	12.5	16/20 ⁴⁾	20/25 4)
Pango of may		from	m³/h	0.03	0.07	0.07	0.16	0.2	0.4	0.8	0.8
	$\Delta p_{b}^{1} = 0.2 \text{ bar}$	to		0.86	1.4	2.2	3.0	3.5	8.0	10	12
now setting		or to 3)	1	0.9	1.6	2.4	3.5	4.5	10	12	15
Cavitation facto	or z			≥ 0.6 ≥				0.55 ≥ 0.5			
Leakage acc. to	standard IEC 53	4	% of k _{vs}	≤ 0.02					≤ 0.05		
Nominal pressu	ıre		PN	25							
Min. differential pressure		bar	see remark ²⁾								
Max. differential pressure			20					16			
Medium				Circulation water / glycolic water up to 30%							
Medium pH				Min. 7, max. 10							
Medium temperature			°C	2 150							
Connections valve tailpieces			External thread External thread and flar					d flange			
			Weld-on and external thread								
					Flange	-					
Materials											
thread		I		Red bronze CuSn5ZnPb (Rg5)					Ductile iron		
Valve body flange			-					EN-GJS-400-18-LT (GGG 40.3)			
Valve seat				Stainless steel, mat. No. 1.4571							
Valve cone				Dezincing free brass CuZn36Pb2As							
Sealing				EPDM							
Pressure relieve system			Piston								

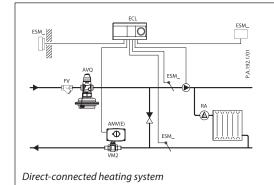
¹⁾ Δp_b - differential pressure over flow restrictor ²⁾ Depends on the flow rate and valve k_{VS} ; For $Q_{set} = Q_{max} \rightarrow \Delta p_{min} \ge 0.5$ bar; For $Q_{set} < Q_{max} \rightarrow \Delta p_{min} = \left(\frac{Q}{k_{VS}}\right)^2 + \Delta p_b$ ³⁾ Higher max flow are achieved at higher differential pressures over AVQ controller. In general at $\Delta p > 1-1.5$ bar ⁴⁾ Flange valve body

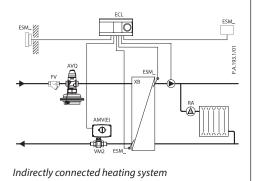
Danfoss


AVQ (PN 25)

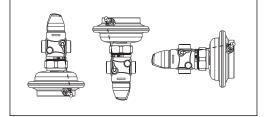

Technical data (continuous)

Туре			AVQ			
Actuator size		cm ²	54			
Nominal pres	sure	PN	25			
Flow restrictor diff. pressure bar		bar	0.2			
Materials						
Actuator Upper casing of diaphragm housing Lower casing of diaphragm		ohragm	Stainless steel, mat. No.1.4301			
		aphragm	Dezincing free brass CuZn36Pb2As			
Diaphragm			EPDM			
Impulse tube			Copper tube Ø 6 × 1 mm			

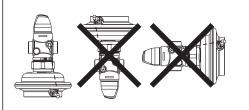

Application principles


- Return mounting

- Flow mounting

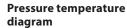


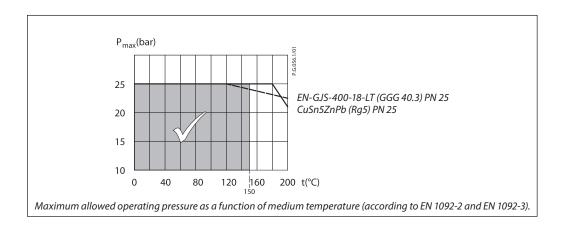
Installation positions


Up to medium temperature of 100°C the controllers can be installed in any position.

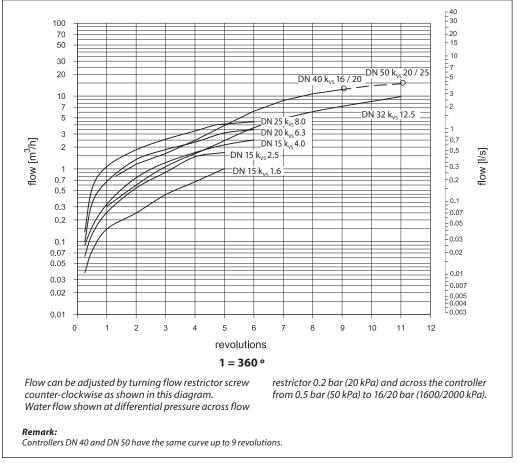
For higher temperatures the controllers have to be installed in horizontal pipes only, with a pressure actuator oriented downwards.

Electrical actuator *Note!*


Installation positions for electrical actuators AMV(E) have to be observed as well. Please see relevant Data Sheet.



AVQ (PN 25)


Data sheet

Flow diagram

Sizing and setting diagram Relation between actual flow and number of revolutions on flow restictor. Values given are approximate.

Note:

For max flow setting on the controller diagrams from Instructions should be used.

AVQ (PN 25)

Sizing

- Directly connected heating system

Example 1

Motorised control valve (MCV) for mixing circuit in direct-connected heating system requires differential pressure of 0.3 bar (30 kPa) and flow less than 600 l/h.

Given data:

 Δp_{circult} corresponds to the required pump pressure in the heating circuit and is not to be considered when sizing the AVQ.

²⁾ Δp_b is differential pressure over flow restrictor.

The total (available) pressure loss across the controller is:

$$\begin{split} \Delta p_{\text{AVQ},\text{A}} &= \Delta p_{\text{min}} - \Delta p_{\text{MCV}} = 0.9 - 0.3 \\ \Delta p_{\text{AVQ},\text{A}} &= 0.6 \text{ bar (60 kPa)} \end{split}$$

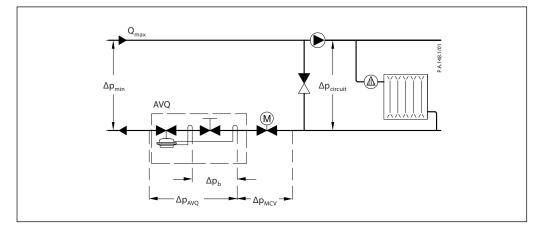
Possible pipe pressure losses in tubes, shut-off fittings, heatmeters, etc. are not included.

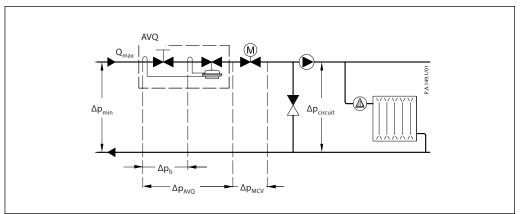
Select controller from flow diagram, page 4, with the smallest possible $k_{\rm vs}$ value considering available flow ranges.

Dantos

 $k_{vs} = 1.6 \text{ m}^3/\text{h}$

The min. required differential pressure across the selected controller is calculated from the formula:


$$\Delta p_{AVQ,MIN} = \left(\frac{Q_{max}}{k_{VS}}\right)^2 + \Delta p_b = \left(\frac{0.6}{1.6}\right)^2 + 0.2$$


 $\Delta p_{AVQ,MIN} = 0.34$ bar (34 kPa)

 $\Delta p_{AVQ,A} > \Delta p_{AVQ,MIN}$

0.6 bar > 0.34 bar

Solution: The example selects AVQ DN 15; k_{vs} value 1.6; flow setting range 0.03-0.9 m³/h.

AVQ (PN 25)

Sizing (continuous)

- Indirectly connected heating system

Example 2

Motorised control valve (MCV) for indirectly connected heating system requires differential pressure of 0.3 (30 kPa) bar and flow less than 1900 l/h.

Given data:

 $\begin{array}{ll} Q_{max} &= 1.9 \ m^3/h \ (1900 \ l/h) \\ \Delta p_{min} &= 1.1 \ bar \ (110 \ kPa) \\ \Delta p_{exchanger} &= 0.1 \ bar \ (10 \ kPa) \\ \Delta p_{MCV} &= 0.3 \ bar \ (30 \ kPa) \ selected \\ \Delta p_b^{-1} &= 0.2 \ bar \ (20 \ kPa) \\ Remark: \\ \end{array}$

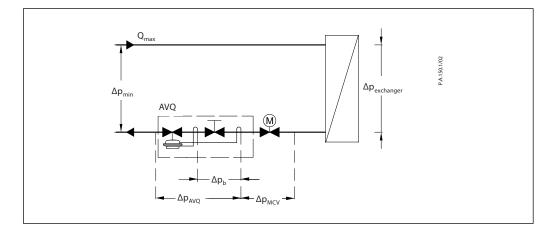
 $\begin{array}{l} The \ total \ (available) \ pressure \ loss \ across \ the \ controller \ is: \\ \Delta p_{{\sf AVQ},{\sf A}} & = \Delta p_{{\sf min}} - \Delta p_{{\sf exchanger}} - \Delta p_{{\sf MCV}} \\ & = 1.1 - 0.1 - 0.3 \\ \Delta p_{{\sf AVQ},{\sf A}} & = 0.7 \ bar \ (70 \ kPa) \end{array}$

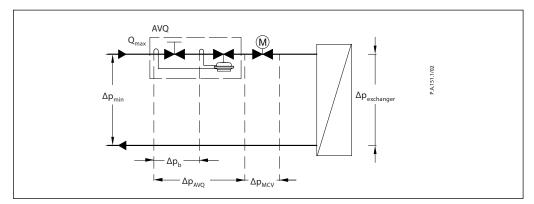
Possible pipe pressure losses in tubes, shut-off fittings, heatmeters, etc. are not included.

Select controller from flow diagram, page 4, with the smallest possible k_{vs} value considering available flow ranges.

$$k_{vs} = 4.0 \text{ m}^3/\text{h}$$

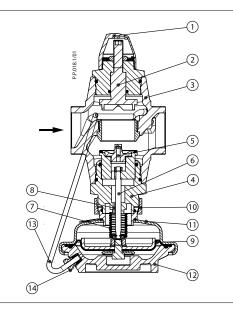
The min. required differential pressure across the selected controller is calculated from the formula:


$$\Delta p_{AVQ,MIN} = \left(\frac{Q_{max}}{k_{VS}}\right)^2 + \Delta p_b = \left(\frac{1.9}{4.0}\right)^2 + 0.2$$


 $\Delta p_{AVQ,MIN} = 0.43 \text{ bar} (43 \text{ kPa})$

 $\Delta p_{\text{AVQ,A}} > \Delta p_{\text{AVQ,MIN}}$

0.7 bar > 0.43 bar


Solution: The example selects AVQ; DN 15; $k_{\rm vs}$ value 4.0; flow setting range 0.07-2.4 $\rm m^3/h.$

Design

- 1. Cover
- 2. Adjustable flow restrictor
- 3. Valve body
- 4. Valve insert
- 5. Pressure relieved valve cone
- 6. Valve stem 7. Built-in spring for flow rate
- control
- 8. Control drain 9. Control diaphragm
- 10. Union nut
- **11.** Upper casing of diaphragm **12.**Lower casing of diaphragm
- 13. Impulse tube
- **14.** Compression fitting for impulse tube

Function

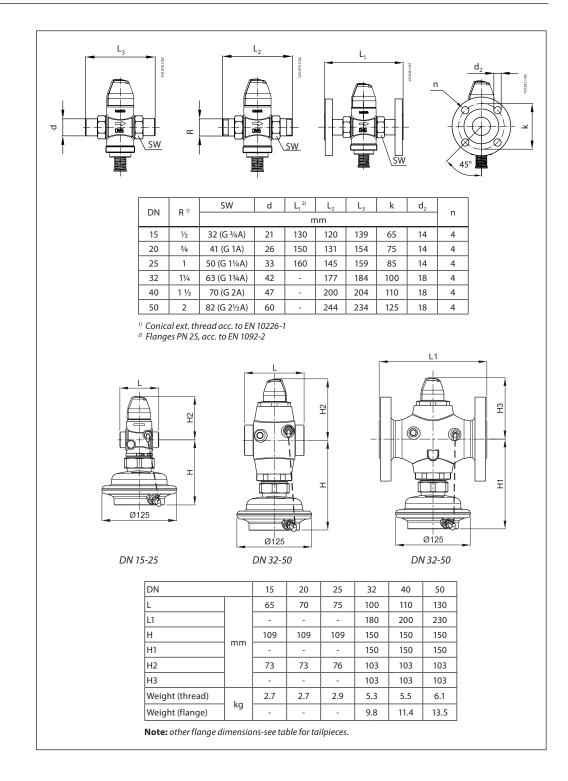
Flow volume causes pressure drop across the adjustable flow restrictor. Resulting pressures are being transferred through the impulse tubes and/or control drain in the actuator stem to the actuator chambers and act on control diaphragm for flow control. The flow restrictor diff. pressure is controlled and limited by means of built-in spring for flow control. Control valve closes on rising differential pressure and opens on falling differential pressure to control max flow.

Settings

Flow setting

Flow setting is being done by the adjustment of the flow restrictor position. The adjustment can be performed on the basis of flow adjustment diagram (see relevant instructions) and/or by the means of heat meter.

Danfoss



AVQ (PN 25)

Dimensions

Data sheet

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequential changes being necessary in specifications already agreed. All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype are trademarks of Danfoss A/S. All rights reserved.